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1. Summary 
 

The goal of this project was to explore the fabrication and testing of 
nanomaterials-based memristive electronic devices.  The specific tasks of the project 
included: selection of metal oxides for memristive devices, development of synthesis 
methods for producing metal oxide nanoparticles, and electrical characterization of 
nanomaterial-based devices. The major accomplishments of this effort were: 1) 
development of synthesis methods that resulted in a wide range of size, morphology and 
crystallinity for titanium oxide and hafnium oxide; 2) investigation of a conductive 
atomic force microscopy (cAFM) approach for measuring nanoparticle electrical 
properties, which was used to measure individual nanoparticles; 3) development of 
techniques to incorporate nanoparticles into nanostructured “vias” and into insulating 
films; and 4) successful measurement of memristive properties of nanoparticle-loaded 
insulating films. These results lay the groundwork for follow-on programs that would 
develop integrated CMOS/memristor hybrid devices. 
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2. Introduction 
The emerging revolution of nanotechnology is expected to stimulate enormous 

improvements in IT capabilities.  Computer architectures are high on the list of 
technologies that will benefit from nanoscale breakthroughs in the structures, properties, 
and performance of nanoelectronics.  For example, critical feature sizes of a transistor 
have been less than 100 nm for years, and yet continued reduction in transistor 
dimensions is expected to continue as new material capabilities as well as new circuit 
architectures accentuating nanoscale properties are developed.  However, the emerging 
trend in IT-focused nanotechnology development is one that tends to look beyond CMOS 
technologies.  The general consensus in this area is that the fundamental roadblocks for 
continued enhancement of traditional approaches to transistor scaling and interconnects 
are soon to limit Moore’s Law.  Therefore, finding new computer architecture constructs 
– inventing and developing novel switching and interconnect technologies for processing 
information, as well as a “bottom up” approach to fabrication – is central to the emerging 
barrier(s) facing the IC industry.  Any new nanotechnology-based approach will initially 
work in conjunction with CMOS computer architectures, but the development of 
nanotechnology complementary to CMOS architectures will result in a major shift in IC 
technology and redefine improvement in commercial and military information systems in 
ways that far surpass CMOS alone.  This research proposal explored an exciting new 
nanotechnology area that exploits bottom up nanofabrication techniques as well as the 
recently demonstrated phenomena of memristance [1], an enabling new nanotechnology 
phenomenon that is being heralded as the fourth fundamental circuit element.   
 Memristive nanoelectronic devices share many of the properties of resistors, as 
well as the same unit of measure (Ohm).  However, in contrast to ordinary resistors in 
which the unit of resistance is permanently fixed, memristance may be programmed or 
switched to different states based on the history of the voltage applied to the memristance 
nanomaterial.  This gives the memristor a hysteresis property in its I-V characteristic.  
This can be contrasted to ordinary resistors where there is a linear relationship between 
current and voltage.  While similar hysteresis properties have been demonstrated by 
magnetic materials, these require the presence of large magnetic fields for 
implementation, which has proven to be a practical limitation to their utilization.  Areas 
such as neuromorphic computing, signal processing, arithmetic processing, and crossbar 
computing are only some of the potential application areas of memristor nanomaterials.  
This effort proposed to collaborate with researchers at AFRL/RI to explore the synthesis, 
nanofabrication, and characterization of nanomaterial-based memristive devices.  
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3. Methods, Assumptions and Procedures 
 

The specific tasks of the project included: material selection, development of 
synthesis methods, development of nanoscale electrical characterization methods, and 
incorporation of nanomaterials into electrical devices.  Materials selection and integration 
flow development was performed in Prof. Cady’s lab at CNSE. Current scientific 
literature was used to guide our materials selection, with emphasis on metal oxides that 
had previously shown memristive properties. All synthesis was also performed in Prof. 
Cady’s laboratory, using inorganic chemical synthesis techniques.  This was done in 
collaboration with Prof. Magnus Bergkvist (CNSE) and Dr. Joseph Van Nostrand 
(AFRL/RI), who had previous experience with nanomaterial synthesis.   

Integration of nanomaterials into electronic devices was accomplished using two 
different approaches.  In the first approach, nanomaterials were integrated into nanoscale 
“vias” which had been etched into silicon wafers.  Wafer fabrication was performed by 
the CNSE Center for Semiconductor Research (CSR).  These wafers had vias etched into 
an insulating silicon oxide layer, with an underlying copper electrode.  Nanomaterials 
were coated onto these wafers and excess nanoparticles were removed using a direct 
contact wiping technique (with a silicone-based applicator).  Another approach that was 
taken was to incorporate nanoparticles into an insulating spin-on glass (SOG) material, 
hydrogen silsesquioxane (HSQ).  These devices were capped with top electrodes using 
conventional photolithography and then tested using a semiconductor probe station. 

Electrical characterization was performed using a variety of methods, including a 
traditional semiconductor probe station (Agilent 1500 probe station) with associated 
analysis hardware/software, and also with conductive atomic force microscopy (cAFM).  
Prof. Cady and his graduate students were assisted by Prof. Rebecca Cortez (Union) and 
Prof. Robert Geer (CNSE) for the performance of cAFM measurements.  We also 
consulted with Bruker (formerly Veeco) during development of cAFM methods.   
 

4. Results and Discussion 
 

4.1 Key Accomplishments 

 
During this 3-year project, we finished the following tasks: 
 
• Selection, synthesis and characterization of metal oxide nanomaterials 
• Electrical testing of individual nanoparticles and nanoparticle aggregates 
• Integration of nanoparticles into insulating films and characterization of resulting 

memristive devices. 
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4.2  Selection, synthesis and characterization of metal oxide nanoparticles 
In this project we selected titanium dioxide and hafnium oxide as the target 

materials for memristive nanodevices.  A thorough survey of current literature indicated 
that these materials had ideal memristive switching properties and that there were readily 
available synthesis methods for producing nanoparticles.  We used a variety of synthesis 
methods to yield a range of size, morphology and crystallinity for both materials (Fig. 1).  
In particular we found that the solvent system and the temperature of the reaction 
strongly influenced particle morphology and crystallinity.  These results were confirmed 
by dynamic light scattering (DLS), transmission electron microscopy (TEM), and x-ray 
diffraction (XRD).  These particles were then incorporated into nanostructured electrical 
devices, as well as insulating thin films, to test their electrical behavior.  Our hypothesis 
was that metal oxide nanomaterials would have memristive behavior, like previously-
reported thin film devices, but that the exact nature of these devices would be 
fundamentally different, due to the high uniformity (in crystal structure, phase, etc.) 
within individual particles.  We further hypothesized that aggregates of particles might 
behave more like thin films than individual particles.  
 

 

 
 
Figure 1: A-D) Anatase TiO2, E) Rutile TiO2, and F) Cubic HfO2 nanoparticles 
 
 

4.3 Electrical testing of individual particles and particle aggregates 

The second result obtained in this work was development of a cAFM strategy for 
measuring nanoparticle electrical properties.  Our initial approach to measuring 
nanoparticles was to attempt electrical probing with an electron microscope using a 
nanomechanical electrical probe.  This effort was unsuccessful, however, due to 
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4.5 Publications in This Project  

 
• Rice, Zachary; Bergkvist, M; Cady, N. (2009, December).  Terminal Phosphate 
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• N.C. Cady, M. Bergkvist, N.M. Fahrenkopf, P.Z. Rice, J.E. Van Nostrand (2010, 

June). Biologically self-assembled memristive circuit elements, Proceedings of 
the ISCAS, Paris, France. 

 
• J.E. Van Nostrand, R. Cortez, Z.P. Rice, N.C. Cady, and M. Bergkvist. 

Morphology, Microstructure and Transport Properties of ZnO Decorated SiO2 
Nanoparticles. (2010) Nanotechnology. 21  415602. 

 
• Rice, Zachary; M. Bergkvist, J.E. Van Nostrand, N. Cady (2010, November). 

Titanium Dioxide Nanoparticles for Memristive Nanoelectronics, Materials 
Research Society (MRS), Boston, MA. 

 
• N. Fahrenkopf, P.Z. Rice, N.C. Cady.  Nucleic acid based biosensing.  In: 

Nanobiomaterial Handbook.  Balaji Sitharaman, Ed., 2011. CRC Press. 
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5. Conclusions 
This effort showed that memristive switching of individual nanoparticles is highly 

difficult to measure, and that individual particles may not, indeed, be resistively switched.  
However, the effort yielded synthesis methods for tuning nanoparticle size, composition, 
and crystallinity, which will be a useful starting point for other nanoparticle-based efforts. 
In addition, we were able to incorporate metal oxide nanoparticles into insulating thin 
films, which did have memristive switching characteristics.  Further, the composition and 
size of the particles had an effect on switching behavior, which could be used to tune the 
switching dynamics of memristors in more complex electrical devices.  We see this as an 
exciting approach towards “dialing in” the electrical properties of memristors.    
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